Canadian Manufacturing

Mitacs presents award to Vancouver researcher for next generation microchips

by CM Staff   

Human Resources Manufacturing Research & Development Sales & Marketing Technology / IIoT Electronics advanced manufacturing awards In Focus Manufacturing Research Technology


The Mitacs Award for Commercialization is presented to a Mitacs intern for an idea brought from research that is now available on the market or soon to be commercialized.

Mitacs presents award to Vancouver researcher for next generation microchips

VANCOUVER — University of British Columbia (UBC) researcher Matthew Mitchell has always enjoyed tinkering at the nanoscale, working with devices the width of a strand of hair or less.

Now, his passion to push scientific boundaries has brought him to UBC spin-off Dream Photonics where he is helping to advance a new era in microchips that use photons (light) and electrons, opening up new possibilities for quantum computing, faster and smarter wearable devices, and self-driving vehicles that use laser beams for navigation.

The cutting-edge work has earned Mitchell the Mitacs Award for Commercialization, awarded by Mitacs, a national organization that fosters growth by solving business challenges with research solutions from academic institutions and supported by the Government of British Columbia. The award will be presented at a ceremony at the National Arts Centre in Ottawa on November 22.

Mitchell — a postdoctoral researcher working under the supervision of Dream Photonics co-founder Lukas Chrostowski and Professor Jeff Young at UBC’s Stewart Blusson Quantum Matter Institute — is being recognized for using a novel technique to 3D print optical structures called waveguides, making it possible to connect photonic chips reliably and efficiently to other components, including optical fibres, photonic integrated circuits, and lasers, like the remote sensing lasers used in emerging LiDAR navigation systems. The innovative technique, called photonic wire bonding, is enabling the company to offer a first-of-its-kind prototyping service to companies working to innovate with the next-generation chips.

Advertisement

“One of the biggest bottlenecks in photonics is packaging, figuring out how to get light in and out of the chips in an efficient way so that they can make reliable connections,” explained Mitchell, noting that most photonic packaging solutions are costly and limited by technical challenges related to scaling. “Our technology overcomes the packaging challenge, making these very tiny photonic chips scalable in real-world applications,” he said.

Mitchell’s work is also helping to advance quantum computing by exploring ultra-low loss methods for packaging the photonic chips being used to build quantum computers, where every photon counts.

“Quantum computing is a field of science that makes it possible to get solutions to extremely difficult problems virtually instantaneously,” he said. “One example is the protein folding problem in biology, the complex process of figuring out a single protein’s structure that cannot be solved with classical computers.”

The Mitacs Award for Commercialization is presented to a Mitacs intern for an idea brought from research that is now available on the market or soon to be commercialized. Mitacs is supported by funding from the Government of Canada and provincial and territorial governments across the country.

Advertisement

Stories continue below